\(\int \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx\) [202]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 28, antiderivative size = 219 \[ \int \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=-\frac {45 \sqrt [4]{-1} a^{5/2} \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{8 d}-\frac {(4-4 i) a^{5/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {19 a^2 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{8 d}+\frac {13 i a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{12 d}-\frac {a^2 \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d} \]

[Out]

-45/8*(-1)^(1/4)*a^(5/2)*arctan((-1)^(3/4)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/d+(-4+4*I)*a^(5/
2)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/d+19/8*a^2*tan(d*x+c)^(1/2)*(a+I*a*tan(d*x
+c))^(1/2)/d+13/12*I*a^2*(a+I*a*tan(d*x+c))^(1/2)*tan(d*x+c)^(3/2)/d-1/3*a^2*(a+I*a*tan(d*x+c))^(1/2)*tan(d*x+
c)^(5/2)/d

Rubi [A] (verified)

Time = 0.75 (sec) , antiderivative size = 219, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.321, Rules used = {3637, 3678, 3682, 3625, 211, 3680, 65, 223, 209} \[ \int \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=-\frac {45 \sqrt [4]{-1} a^{5/2} \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{8 d}-\frac {(4-4 i) a^{5/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {a^2 \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}+\frac {13 i a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{12 d}+\frac {19 a^2 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{8 d} \]

[In]

Int[Tan[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

(-45*(-1)^(1/4)*a^(5/2)*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(8*d) - ((
4 - 4*I)*a^(5/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d + (19*a^2*Sqrt[Ta
n[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/(8*d) + (((13*I)/12)*a^2*Tan[c + d*x]^(3/2)*Sqrt[a + I*a*Tan[c + d*x]]
)/d - (a^2*Tan[c + d*x]^(5/2)*Sqrt[a + I*a*Tan[c + d*x]])/(3*d)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 3625

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
-2*a*(b/f), Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3637

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[b^2*(a + b*Tan[e + f*x])^(m - 2)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(m + n - 1))), x] + Dist[a/(d*(m + n - 1
)), Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^n*Simp[b*c*(m - 2) + a*d*(m + 2*n) + (a*c*(m - 2) +
b*d*(3*m + 2*n - 4))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a
^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && IntegerQ[2*m] && GtQ[m, 1] && NeQ[m + n - 1, 0] && (IntegerQ[m] || Intege
rsQ[2*m, 2*n])

Rule 3678

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[B*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^n/(f*(m + n))), x] +
Dist[1/(a*(m + n)), Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n - 1)*Simp[a*A*c*(m + n) - B*(b*c*m + a*
d*n) + (a*A*d*(m + n) - B*(b*d*m - a*c*n))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] &
& NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[n, 0]

Rule 3680

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[b*(B/f), Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rule 3682

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A*b + a*B)/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x]
, x] - Dist[B/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[e + f*x]), x], x] /; FreeQ[{a, b
, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {a^2 \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}+\frac {1}{3} a \int \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} \left (\frac {11 a}{2}+\frac {13}{2} i a \tan (c+d x)\right ) \, dx \\ & = \frac {13 i a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{12 d}-\frac {a^2 \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}+\frac {1}{6} \int \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)} \left (-\frac {39 i a^2}{4}+\frac {57}{4} a^2 \tan (c+d x)\right ) \, dx \\ & = \frac {19 a^2 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{8 d}+\frac {13 i a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{12 d}-\frac {a^2 \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}+\frac {\int \frac {\sqrt {a+i a \tan (c+d x)} \left (-\frac {57 a^3}{8}-\frac {135}{8} i a^3 \tan (c+d x)\right )}{\sqrt {\tan (c+d x)}} \, dx}{6 a} \\ & = \frac {19 a^2 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{8 d}+\frac {13 i a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{12 d}-\frac {a^2 \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}+\frac {1}{16} (45 a) \int \frac {(a-i a \tan (c+d x)) \sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx-\left (4 a^2\right ) \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx \\ & = \frac {19 a^2 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{8 d}+\frac {13 i a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{12 d}-\frac {a^2 \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}+\frac {\left (45 a^3\right ) \text {Subst}\left (\int \frac {1}{\sqrt {x} \sqrt {a+i a x}} \, dx,x,\tan (c+d x)\right )}{16 d}+\frac {\left (8 i a^4\right ) \text {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d} \\ & = -\frac {(4-4 i) a^{5/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {19 a^2 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{8 d}+\frac {13 i a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{12 d}-\frac {a^2 \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}+\frac {\left (45 a^3\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+i a x^2}} \, dx,x,\sqrt {\tan (c+d x)}\right )}{8 d} \\ & = -\frac {(4-4 i) a^{5/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {19 a^2 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{8 d}+\frac {13 i a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{12 d}-\frac {a^2 \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}+\frac {\left (45 a^3\right ) \text {Subst}\left (\int \frac {1}{1-i a x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{8 d} \\ & = -\frac {45 \sqrt [4]{-1} a^{5/2} \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{8 d}-\frac {(4-4 i) a^{5/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {19 a^2 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{8 d}+\frac {13 i a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{12 d}-\frac {a^2 \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d} \\ \end{align*}

Mathematica [B] (verified)

Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(442\) vs. \(2(219)=438\).

Time = 6.32 (sec) , antiderivative size = 442, normalized size of antiderivative = 2.02 \[ \int \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=\frac {4 i \sqrt {2} a^2 \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {4 i a^{5/2} \text {arcsinh}\left (\frac {\sqrt {i a \tan (c+d x)}}{\sqrt {a}}\right ) \sqrt {1+i \tan (c+d x)} \sqrt {i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {5 (-1)^{3/4} a^2 \text {arcsinh}\left (\sqrt [4]{-1} \sqrt {\tan (c+d x)}\right ) \sqrt {a+i a \tan (c+d x)}}{8 d \sqrt {1+i \tan (c+d x)}}+\frac {19 a^2 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{8 d}+\frac {13 i a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{12 d}-\frac {a^2 \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}-\frac {i a^{3/2} \text {arcsinh}\left (\frac {\sqrt {i a \tan (c+d x)}}{\sqrt {a}}\right ) \sqrt {i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d \sqrt {1+i \tan (c+d x)} \sqrt {\tan (c+d x)}} \]

[In]

Integrate[Tan[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

((4*I)*Sqrt[2]*a^2*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[I*a*Tan[c + d*x]]
)/(d*Sqrt[Tan[c + d*x]]) - ((4*I)*a^(5/2)*ArcSinh[Sqrt[I*a*Tan[c + d*x]]/Sqrt[a]]*Sqrt[1 + I*Tan[c + d*x]]*Sqr
t[I*a*Tan[c + d*x]])/(d*Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]) - (5*(-1)^(3/4)*a^2*ArcSinh[(-1)^(1/4)*
Sqrt[Tan[c + d*x]]]*Sqrt[a + I*a*Tan[c + d*x]])/(8*d*Sqrt[1 + I*Tan[c + d*x]]) + (19*a^2*Sqrt[Tan[c + d*x]]*Sq
rt[a + I*a*Tan[c + d*x]])/(8*d) + (((13*I)/12)*a^2*Tan[c + d*x]^(3/2)*Sqrt[a + I*a*Tan[c + d*x]])/d - (a^2*Tan
[c + d*x]^(5/2)*Sqrt[a + I*a*Tan[c + d*x]])/(3*d) - (I*a^(3/2)*ArcSinh[Sqrt[I*a*Tan[c + d*x]]/Sqrt[a]]*Sqrt[I*
a*Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/(d*Sqrt[1 + I*Tan[c + d*x]]*Sqrt[Tan[c + d*x]])

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 449 vs. \(2 (173 ) = 346\).

Time = 0.94 (sec) , antiderivative size = 450, normalized size of antiderivative = 2.05

method result size
derivativedivides \(-\frac {\left (\sqrt {\tan }\left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2} \left (16 \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (\tan ^{2}\left (d x +c \right )\right )+48 i \sqrt {i a}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a -52 i \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )-48 \sqrt {i a}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a +192 i \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a -135 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}-114 \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\right )}{48 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(450\)
default \(-\frac {\left (\sqrt {\tan }\left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2} \left (16 \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (\tan ^{2}\left (d x +c \right )\right )+48 i \sqrt {i a}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a -52 i \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )-48 \sqrt {i a}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a +192 i \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a -135 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}-114 \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\right )}{48 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(450\)

[In]

int(tan(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

-1/48/d*tan(d*x+c)^(1/2)*(a*(1+I*tan(d*x+c)))^(1/2)*a^2*(16*(-I*a)^(1/2)*(I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*
x+c)))^(1/2)*tan(d*x+c)^2+48*I*(I*a)^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+
I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*2^(1/2)*a-52*I*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)*(-I*a)^(1
/2)*tan(d*x+c)-48*(I*a)^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d
*x+c))/(tan(d*x+c)+I))*2^(1/2)*a+192*I*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^
(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a-135*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a
)^(1/2)+a)/(I*a)^(1/2))*a*(-I*a)^(1/2)-114*(-I*a)^(1/2)*(I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2))/(a*
tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(I*a)^(1/2)/(-I*a)^(1/2)

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 694 vs. \(2 (163) = 326\).

Time = 0.26 (sec) , antiderivative size = 694, normalized size of antiderivative = 3.17 \[ \int \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=\frac {\sqrt {2} {\left (91 \, a^{2} e^{\left (5 i \, d x + 5 i \, c\right )} + 98 \, a^{2} e^{\left (3 i \, d x + 3 i \, c\right )} + 39 \, a^{2} e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} + 12 \, \sqrt {-\frac {2025 i \, a^{5}}{64 \, d^{2}}} {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} + 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \log \left (\frac {{\left (45 \, \sqrt {2} {\left (a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} + 16 \, \sqrt {-\frac {2025 i \, a^{5}}{64 \, d^{2}}} d e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{45 \, a^{2}}\right ) - 12 \, \sqrt {-\frac {2025 i \, a^{5}}{64 \, d^{2}}} {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} + 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \log \left (\frac {{\left (45 \, \sqrt {2} {\left (a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} - 16 \, \sqrt {-\frac {2025 i \, a^{5}}{64 \, d^{2}}} d e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{45 \, a^{2}}\right ) - 12 \, \sqrt {-\frac {32 i \, a^{5}}{d^{2}}} {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} + 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \log \left (\frac {{\left (4 \, \sqrt {2} {\left (a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} + \sqrt {-\frac {32 i \, a^{5}}{d^{2}}} d e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{4 \, a^{2}}\right ) + 12 \, \sqrt {-\frac {32 i \, a^{5}}{d^{2}}} {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} + 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \log \left (\frac {{\left (4 \, \sqrt {2} {\left (a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} - \sqrt {-\frac {32 i \, a^{5}}{d^{2}}} d e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{4 \, a^{2}}\right )}{24 \, {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} + 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )}} \]

[In]

integrate(tan(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/24*(sqrt(2)*(91*a^2*e^(5*I*d*x + 5*I*c) + 98*a^2*e^(3*I*d*x + 3*I*c) + 39*a^2*e^(I*d*x + I*c))*sqrt(a/(e^(2*
I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) + 12*sqrt(-2025/64*I*a^5/d^2
)*(d*e^(4*I*d*x + 4*I*c) + 2*d*e^(2*I*d*x + 2*I*c) + d)*log(1/45*(45*sqrt(2)*(a^2*e^(2*I*d*x + 2*I*c) + a^2)*s
qrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) + 16*sqrt(-2025/
64*I*a^5/d^2)*d*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/a^2) - 12*sqrt(-2025/64*I*a^5/d^2)*(d*e^(4*I*d*x + 4*I*c) +
2*d*e^(2*I*d*x + 2*I*c) + d)*log(1/45*(45*sqrt(2)*(a^2*e^(2*I*d*x + 2*I*c) + a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c)
+ 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) - 16*sqrt(-2025/64*I*a^5/d^2)*d*e^(I*d*x +
I*c))*e^(-I*d*x - I*c)/a^2) - 12*sqrt(-32*I*a^5/d^2)*(d*e^(4*I*d*x + 4*I*c) + 2*d*e^(2*I*d*x + 2*I*c) + d)*log
(1/4*(4*sqrt(2)*(a^2*e^(2*I*d*x + 2*I*c) + a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c)
 + I)/(e^(2*I*d*x + 2*I*c) + 1)) + sqrt(-32*I*a^5/d^2)*d*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/a^2) + 12*sqrt(-32*
I*a^5/d^2)*(d*e^(4*I*d*x + 4*I*c) + 2*d*e^(2*I*d*x + 2*I*c) + d)*log(1/4*(4*sqrt(2)*(a^2*e^(2*I*d*x + 2*I*c) +
 a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) - sqrt(-3
2*I*a^5/d^2)*d*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/a^2))/(d*e^(4*I*d*x + 4*I*c) + 2*d*e^(2*I*d*x + 2*I*c) + d)

Sympy [F(-1)]

Timed out. \[ \int \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=\text {Timed out} \]

[In]

integrate(tan(d*x+c)**(3/2)*(a+I*a*tan(d*x+c))**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=\int { {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \tan \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

[In]

integrate(tan(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((I*a*tan(d*x + c) + a)^(5/2)*tan(d*x + c)^(3/2), x)

Giac [F(-2)]

Exception generated. \[ \int \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(tan(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:The choice was done assuming 0=[0]Warning, replacing 0 by -86, a substitution variable should perhaps be pu
rged.Warnin

Mupad [F(-1)]

Timed out. \[ \int \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=\int {\mathrm {tan}\left (c+d\,x\right )}^{3/2}\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2} \,d x \]

[In]

int(tan(c + d*x)^(3/2)*(a + a*tan(c + d*x)*1i)^(5/2),x)

[Out]

int(tan(c + d*x)^(3/2)*(a + a*tan(c + d*x)*1i)^(5/2), x)